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Computation of pseudospectra
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There is more to the computation of pseudospectra than the obvious algorithm
of computing singular value decompositions on a grid and sending the results
to a contour plotter. Other methods may be hundreds of times faster. The
state of the art is reviewed, with emphasis on methods for dense matrices,
and a MATLAB code is given.
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1. Introduction

A new tool has become popular in the 1990s for the study of matrices and
linear operators. The traditional tool is eigenvalues or spectra (for matrices
or linear operators, respectively), which may reveal information about the
behaviour of systems both linear and nonlinear, including stability, reso-
nance, and accessibility to matrix iterations and preconditioners. Eigenval-
ues and spectra tend to be less informative, however, when the matrix or
operator is non-Hermitian, or more generally, nonnormal (roughly, having
nonorthogonal eigenvectors). Pseudospectra are sets in the complex plane
that sometimes do better. For each e > 0, the e-pseudospectrum of a given
matrix or operator is a nonempty set in the complex plane, and the spectrum
and the field of values (= numerical range) can be recovered as special cases
from the limits e —> 0 and (after peeling away an e-border region) e —> oo,
respectively.

Pseudospectra seem to have been invented independently (with different
names) at least five times: by Landau (1975, 1976, 1977), Varah (1979),
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Godunov et al. (Godunov 1992 and 1997, Godunov, Kiriljuk and Kostin
1990, Kostin 1991, Godunov, Antonov, Kirilyuk and Kostin 1993), myself
(1990, 1992), and Hinrichsen, Pritchard and Kelb (Hinrichsen and Pritchard
1992, Hinrichsen and Kelb 1993). Aside from one plot by J. Demmel (1987),
however, they seem not to have been computed numerically before 1990.
This situation changed completely in the 1990s, and pseudospectra have
now been computed for dozens of applications. Here is a list of some of
them, ordered by year of publication.

spectral methods for differential equations (Reddy and Trefethen 1990)
approximate Fourier analysis (Donato 1991)
matrix iterations (Nachtigal, Reichel and Trefethen 1992)
Toeplitz matrices and operators (Reichel and Trefethen 1992)
control theory (Hinrichsen and Pritchard 1992)
random matrices (Trefethen 1992)
Orr-Sommerfeld operator (Reddy, Schmid and Henningson 1993)
Airy operator (Reddy, Schmid and Henningson 1993)
flow in a channel (Trefethen, Trefethen, Reddy and Driscoll 1993)
compressible boundary layer flow (Schmid et al. 1993)
trailing line vortex flow (Schmid et al. 1993)
Wiener-Hopf operators (Reddy 1993)
stiffness of ordinary differential equations (Higham and Trefethen 1993)
convection-diffusion operators (Reddy and Trefethen 1994)
Hille-Phillips and Zabczyk operators (Baggett 1994)
polynomial zerofmding (Toh and Trefethen 1994)
magnetohydrodynamics (Borba et al. 1994)
aerodynamic flutter (Braconnier, Chatelin and Dunyach 1995)
flow down inclined plane (Olsson and Henningson 1995)
rounding error analysis (Chaitin-Chatelin and Fraysse 1996)
reaction-convection-diffusion equations (Higham and Owren 1996)
preconditioners for fluid mechanics (Darmofal and Schmid 1996)
absorbing boundary conditions (Driscoll and Trefethen 1996)
waveform relaxation (Lumsdaine and Wu 1997)
Papkovitch-Fadle problem (Trefethen 1997)
Abel integral operators (Plato 1997)
Ginzburg-Landau equations (Cossu and Chomaz 1997)
non-Hermitian quantum mechanics (Davies 1999a)
differential operators (Davies 19996)
Markov chain 'cutoff phenomenon' (Jonsson and Trefethen 1998)
Chebyshev polynomials of matrices (Toh and Trefethen 1999a)
flow in a pipe (Trefethen, Trefethen and Schmid 1999)
ionospheric instabilities (Flaherty, Seyler and Trefethen 1999)
lasers and optical resonators (see Section 21).
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As is common in the history of scientific computing, this progress has
been made possible by developments in both hardware and algorithms.

There is an obvious numerical method for plotting pseudospectra: com-
pute an SVD (singular value decomposition) at each point on a grid in the
complex plane, then send the results to a contour plotter. However, one can
do better, typically by a factor of about N/4 for a problem of dimension N,
even without using multiple processors or the techniques of sparse matrices.
The aim of this article is to explain the ideas that make this possible.

The style of the article is tutorial. The reader I imagine has an interest
in eigenvalue problems for large matrices, probably arising as discretizations
of differential or integral operators, and a suspicion that sometimes they do
not reveal all they should about his or her problem. Among the questions
he or she may ask are, When should I compute pseudospectra? How should
I do it? What will they tell me?

Throughout our discussion, ideas for matrices will be formulated in a
manner consistent with the fact that, in most applications, the matrices we
are dealing with are approximations to infinite-dimensional operators. Since
pseudospectra are norm-dependent, it is essential to frame the matrix norms
in a manner that permits them to converge to the appropriate continuous
norms as the approximation is refined. We handle this by denning the inner
product and norm associated with a matrix A with respect to a weighting
matrix W, which might, for example, be a diagonal matrix of Gauss quadra-
ture coefficients. The similarity transformation B = VKAH7"1 then provides
a matrix B for which the equivalent problem of pseudospectra is associated
with the usual Euclidean inner product and norm.

The literature on the numerical computation of pseudospectra is grow-
ing, but still manageable, and in this article, all the papers I know of are
cited. Let me acknowledge here at the beginning those authors I am aware
of who have published on this subject: C. Bekas, Thierry Braconnier, Mar-
tin Briihl, Jean-Frangois Carpraux, Frangoise Chaitin-Chatelin, Jocelyne
Erhel, Valerie Fraysse, Eduardo Gallestey, Stratis Gallopoulos, Luc Giraud,
Sergei Godunov, Vincent Heuveline, Nicholas Higham, Didi Hinrichsen, Vik-
tor Kostin, Shiu-Hong Lui, P. Lavallee, Osni Marques, Alan McCoy, Bernard
Philippe, Tony Pritchard, Axel Ruhe, Milhoud Sadkane, Valeria Simoncini,
Kim-Chuan Toh, Vincent Toumazou, and Anne Trefethen. To any others
whom I may have overlooked, my sincere apologies.

For an introduction to the noncomputational aspects of pseudospectra, I
recommend Trefethen (1992, 1997, 1999), and Trefethen, Trefethen, Reddy
and Driscoll (1993).

In 1990, getting a good plot of pseudospectra on a workstation for a
30 x 30 matrix took me several minutes. Today I would expect the same of
a 300 x 300 matrix, and pseudospectra of matrices with dimensions in the
thousands are around the corner.
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2. Norms and adjoints: matrices A and B

Let A be a real or complex matrix or closed linear operator acting in a
Hilbert space over the complex numbers C with inner product (•, •) and
corresponding norm || • ||. (The generalization to Banach spaces is discussed
in Section 18.) In practice we are so often concerned with matrix discretiza-
tions of infinite-dimensional linear operators that it is important to be more
explicit. The following manipulations in the context of pseudospectra were
perhaps first written down in Section 5 and Appendix A of Reddy, Schmid
and Henningson (1993). In the matrix case, we assume that a nonsingular
weight matrix W has been prescribed and that (•, •) and || • || are defined
by

(u, v) = {Wu)H(Wv) = uH(WHW)v, (2.1)

||n||2 = (u,u) = (Wu)H(Wu) = uH(WHW)u. (2.2)

Here and throughout this paper in similar contexts, u and v are column
vectors and uH, the Hermitian conjugate, is the complex conjugate transpose
of u, and similarly for W. Another way to write (2.1) and (2.2) is

(u,v) = (Wu,Wv)2, \\u\\ = \\Wu\\2, (2.3)

where (u,v)2 = uHv and ||u||2 = uHu, 'the 2-norm'. In applications, W
might be \fh times the identity, if A is obtained by discretization on a
regular ID grid of spacing h, or it might be a nonconstant diagonal matrix
of quadrature weights for discretizations on irregular grids.

The adjoint of A, denoted A*, is defined by the condition (Au,v) =
(u,A*v) for all u and v in the domains of A and .A*, respectively. In the
matrix case, a little calculation shows that A* is given by

A* = (WHW)~1AH{WHW). (2.4)

If W = I, all the complications above vanish and we have (u, v) = (u, v)2,
\\u\\ = \\u\\2, and A* = AH. Alternatively, for general W, we can make the
complications go away by introducing the new matrix

B = WAW~l. (2.5)

If v = Au for some u and v, then (2.5) implies

(Wv) = B(Wu),

and by the definition of matrix norms subordinate to vector norms, this
implies \\A\\ = ||-B||2- More generally, we have ||/(.A)|| = ||/(B)||2 for any
function / . From (2.4) we can also compute

BH = WA*W~\ (2.6)
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revealing that the same transformation that takes A to B also takes A* to
BH.

The matrix A is normal if AA* = A*A or, equivalently, if A has a complete
set of eigenvectors that are orthogonal with respect to the inner product
(•, •). From (2.4) we can calculate that this is the same as the equality
BBH = BHB or, equivalently, the condition that B has a complete set of
eigenvectors that are orthogonal with respect to the inner product (•, • )2-
For example, A is normal with respect to (•, •) if it is self-adjoint or skew-
adjoint, and B is normal with respect to (•, • )2 if it is Hermitian or skew-
Hermitian. Sometimes we will say that a matrix is 'highly nonnormal' or
'far from normal', terms with no precise meaning beyond the idea that its
eigenvectors, if they exist, are in some sense 'far from orthogonal'.

3. Spectrum and pseudospectra

There is a function f(A) that we care about especially: the resolvent. For
any 2 g C , the resolvent of A at z is the matrix or linear operator

(z-A) - l

if this exists and is bounded, where z — A is a shorthand for zl — A and I is
the identity. The spectrum of A, denoted by A(A), is the set of z G C where
the resolvent does not exist or is unbounded.

The norm of the resolvent is

with B related to A as always by (2.5), and we use the convention that this
quantity is defined for all z G C, including points in the spectrum A(A) =
A(B), where it takes the value oo. For each e > 0, the e-pseudospectrum of
A is defined by

Ae(A) = {zeC: IKs-A)"1!!^-1} (3.1)
= {zee-. i K z - s ) - 1 ! ^ - 1 } .

In words, the e-pseudospectrum is the subset of the complex plane bounded
by the e"1 level curve or curves of the resolvent norm. (Some authors use a
strict inequality; it makes little difference for applications.) For z £ A(A),
since ||(z — ^l)"1!! is the supremum over all unit vectors u and v of the sub-
harmonic functions \(u, (z — A)~1v)\, it is a subharmonic function itself and
hence satisfies the maximum principle, which implies that each bounded
component of any e-pseudospectrum contains part of A (.A). The subhar-
monicity of the norm of the resolvent was pointed out by Boyd and Des-
oer (1985) and has been exploited for computational purposes by Gallestey
(1998a, 19986).
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Other conditions can be derived that are equivalent to (3.1). Here is the
one that is the most important and most different:

Ae(A) = {z GC : z eA(A + E) for some £ with ||£7|| < e } (3.2)

= {z eC : z G A(B + E) for some E with | |£ | | 2 < e} .

In words, the e-pseudospectrum is the set of all complex numbers that are in
the spectrum of some matrix or operator obtained by a perturbation of norm
at most e. This definition implies that pseudospectra can be interpreted in
terms of perturbations of spectra, but this does not mean that the analysis
of perturbations is the main thing pseudospectra are useful for. On the
contrary, other aspects of behaviour of a matrix or linear operator tend to
be more important in applications, including growth or decay of ||^4n|| as a
function of n and growth or decay of He^H as a function of t. I admit that
over the years I have become exasperated by hearing so many people make
the mistake of assuming that pseudospectra, since they can be defined by
perturbations, must be a tool for coping robustly with rounding errors. In
most applications, rounding errors are not the point at all.

A starting point for computations is a third equivalent definition of pseu-
dospectra. If crmia(A) denotes the smallest singular value of A, then we
have

Ae(A) = { z e C : amin(z-B)<e}. (3.3)

Thus the pseudospectra of A are the sets in the z-plane bounded by level
curves of the function am\n(z — B).

For details of the equivalence of (3.1)-(3.3), see for example van Dorsse-
laer, Kraaijevanger and Spijker (1993). The mathematical foundations of
such material are set forth in the book by Kato (1976).

4. A tutorial example

To make the discussion concrete, this article is built around a single exam-
ple of a highly nonnormal differential operator, which we shall treat com-
putationally by a succession of methods. The operator is a time-reduced
one-dimensional Schrodinger operator of a standard kind, except that the
potential function that defines the operator is complex rather than real:

Au(x) = u" + (ex2 - dx4)u, c = 3 + 3i, d=±. (4.1)

(The constants have been chosen to make the behaviour interesting.) This
operator acts on functions defined on the whole real line R. To be precise,
the Hilbert space in which A acts is L2 = L2(—oo,oo), and the domain
on which it is defined is the subset of L2 of functions that have a second
derivative in L2. Roughly speaking, for small x, the potential defining A
looks quadratic and complex, whereas for large x it is quartic and nearly
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real. Note that A is invariant with respect to negation of x, which implies
that if u(x) is an eigenfunction of A with eigenvalue A, then so is u(—x). In
fact, it can be proved that all the eigenvalues of A are simple, and thus each
eigenfunction is either even or odd.

The observation that complex Schrodinger operators are highly nonnormal
and have interesting pseudospectra is due to Brian Davies of King's College
London (Davies 1999a). Our example is adapted from Davies' work.

Here then is our task. We are presented with an operator such as (4.1)
and wish to find out: What do its spectrum and pseudospectra look like?
What do they tell us about its behaviour?

5. Discretization

If an operator cannot be handled analytically, the usual course is to approxi-
mate it by finite matrices. For computations of e-pseudospectra, we are typ-
ically interested in small values of e, and thus high-accuracy approximations
are desirable. This means that, wherever possible, one should discretize by
spectral methods rather than finite differences or finite elements, since spec-
tral methods have arbitrarily high order of accuracy for smooth problems
(Canuto et al. 1988, Fornberg and Sloan 1994, Fornberg 1996).

For our tutorial example, (4.1) has been discretized by a Chebyshev collo-
cation spectral method on a finite interval [-L, L] with boundary conditions
u(±L) = 0. (One could work on [0, L] and separate the even and odd parts
of the problem, which are orthogonal, but we did not do this.) For clarity,
especially in the treatment of weight functions, let us spell this out. First
the interval [-L, L] is approximated by the set of N + 2 Chebyshev points
defined by

( J ) j = 0,...,N + l. (5.1)

The operator A is then approximated on this grid by an N x AT matrix
AN defined by the following prescription. For any iV-vector v, ANV is the
iV-vector obtained by two steps:

• let p be the unique polynomial of degree < N + 1 with p(±L) = 0 and
p(xj) = Vj for 1 < j < N,

• for j = 1 , . . . , N, (ANv)j = p"(xj) + (cxj - dxf)p{xj).

The eigenfunctions of A decay exponentially and, as a consequence, we find
that any particular eigenfunction can be computed accurately via discrete
matrices AN for some finite L. For the portion of the spectrum and pseu-
dospectra considered in this article, L = 10 is sufficiently large and, from
now on, all of our numerical examples are based on L = 10.

In the context of our spectral discretization, any N-vector v is associated
with the continuous function u(x) equal to the polynomial interpolant p(x)



COMPUTATION OF PSEUDOSPECTRA 255

described above for \x\ < L and to zero for |x| > L. In particular, for each
eigenvector v of AN, there is an associated continuous function u(x), and if
v is sufficiently smooth and decays strongly enough to zero near x = ±L, we
expect that u(x) will be close to an eigenfunction of A with approximately
the same eigenvalue.

The description above is all we need for differentiation, but to compute
pseudospectra, we need to integrate, too. For the spectral discretization our
weight matrix W will take the form

W = diag(wi,W2,- • -,wN) (5.2)

for suitable weights Wj > 0. A sufficient condition for ^4^ to converge in
some sense to A as N —> oo is

(5.3)

for any sequence of indices j with Xj —> x, and any reasonable choice sat-
isfying this condition (and indeed many choices that do not satisfy it) will
generally produce good plots of pseudospectra. However, much better per-
formance than mere convergence is achievable if we choose the weights based
on ideas of Gauss quadrature, and in applications it is important to get this
right if one is to be confident of the results. For our Chebyshev grid, there
exists a set of Gauss (or Gauss-Chebyshev-Lobatto) weights {WJ} satisfying
(5.3) such that

rL

f{x)dx = 22£
if/ is any function equal to v L2 — x2 times a polynomial of degree < 2iV—1.
These weights are simply

and, from now on, these are our choice, with W defined accordingly by (5.2)
and B by (2.5).

Here is the MATLAB code segment that I used to construct the matrices
A and B.

D = zeros(N+2.N+2); i = (O:N+1)'; ci = [2;ones(N,l);2];
x = cos(pi*i/(N+l));
for j = O:N+1
cj = 1; if j==0 I j==N+l cj = 2; end
denom = cj*(x( i+l) -x(j+l) ) ; denom(j+l) = 1;
D(i+l,j+l) = ci .*(-l) .~(i+j). /denom;
if j>0 & j<N+l D(j+l,j+l) = - .5*x( j+ l ) / ( l -x ( j+ l ) -2 ) ; end;
end;
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D ( l , l ) = (2*(N+l)~2+l)/6; D(N+2,N+2) = -(2*(N+l)
L = 10;
x = x(2:N+l); x = L*x; D = D/L;
A = D~2; A = A(2:N+1,2:N+1);
A = A + (3+3*sqr t ( - l ) )*diag(x.~2) - ( l /16)*diag(x .~4) ;
w = sqr t (p i*sqr t (L~2-x . "2 ) / (2*(N+l ) ) ) ;
B = zeros(N,N); for j=l :N, B ( : , j ) = w.*A( : , j ) /w( j ) ; end

We now move on to the study of these matrix approximations to the
differential operator (4.1). In doing so, however, we must note that, for some
problems, it may not be realistic to expect an operator to be approximated
by a single matrix. An example arises in the large-scale hydrodynamic
stability calculations of Trefethen, Trefethen, Reddy and Driscoll (1993).
Here, the operator depends on two Fourier parameters a and /?, and, for
each choice of the parameters, there is a different discretization matrix Aap.
Computing the resolvent norm at a point z requires the minimization of
^min(z—Aap) over all a and /3, and the optimal choices vary from one value of
z to the next. Situations like this are not unusual in large-scale applications,
and when they arise, it may be necessary to consider discretization and
computation of pseudospectra in tandem rather than in sequence.

6. Eigenvalues and eigenvectors

The first thing we compute are eigenvalues of A or, equivalently, B. For
matrices of dimensions less than 1000 or so, this is easily done by stan-
dard 'direct' methods related to the QR algorithm, which deliver results to
close to machine precision (not counting what is lost to ill-conditioning) in
O(NZ) floating point operations. For matrices of larger dimensions, Krylov
subspace iterations are generally used instead to determine not all the eigen-
values but those in the portion of the complex plane considered important
(Lehoucq, Sorensen and Yang 1998, Saad 1992).

For our example problem, we can get away with dimensions small enough
for direct methods to be appropriate, and Figure 1 shows eigenvalues calcu-
lated by standard methods for the spectral approximations A^ with JV =
140, 160, 180, 200. As is typical with discretizations of differential operators,
it is the eigenvalues closest to the origin that are obtained for the smaller
values of N, since these tend to correspond to smoother eigenmodes, resolv-
able on coarser grids. Once N is large enough that all the eigenvalues in
this frame are essentially correct, we observe a Y-shaped distribution, with
all the eigenvalues lying in the left half-plane and an infinite curve of them
extending towards — oo. Of course, when approaching a problem like this
in practice, one must take pains at every step to vary all possible aspects of
the discretization systematically until one is confident that the results are



COMPUTATION OF PSEUDOSPECTRA 257

it •

* :

* :

* •

it

: it

•it

'• * . * *

• • • • ! • • • • \
•

: •
: •

•
: •
: •

•
'• •

: •

: •

; 1

N = 140

Fig. 1. Eigenvalues of matrix approximations AN to (4.1) of dimensions
N = 140,160,180,200. Dots mark simple eigenvalues and stars mark nearly

degenerate (though not exactly degenerate) pairs. As iV" increases, the two paths
on the left zip together into a single line. For N = 200, the values throughout this

part of the complex plane are accurate to 3 digits or more, and we take ^200 a s

our matrix A for subsequent computations. (The labels 1, 3, 16, 50 are utilized in
Figure 2.) Another 147 eigenvalues of A2QO lie outside the axis limits to the left
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correct. In some cases convergence theorems will be available to give further
reassurance (Chatelin 1983).

Figure 1 is reminiscent of Figure 3 and other figures in the paper by
Reddy, Schmid and Henningson (1993) on pseudospectra of Orr-Sommerfeld
operators. That paper represents an outstanding first example of a study in
which pseudospectra of a differential operator were computed carefully.

Computation times will occasionally be reported in this article, all based
on MATLAB programs executed on a SUN Ultra 30 workstation. To find the
eigenvalues of ̂ 200 takes a little more than one second, whereas the smaller
matrix A140 can be handled in less than half a second.

It is typical in applications to encounter a picture like Figure 1, which
blends some degree of complexitj' with a great deal of structure. Naturally,
one wants to know more, and a first question one may ask is, What do the
eigenvectors look like? For this question, A and B are no longer identical:
if v is an eigenvector of A, then Wv is the corresponding eigenvector of B.
For a plot representing physical space, it is the former that we want, and
Figure 2 shows four of the eigenvectors of ^200 • The four nearly degener-
ate eigenvalues in the upper-right branch of the Y correspond to even/odd
eigenfunction pairs. For example, 'mode 3', illustrated in the figure, is even,
whereas 'mode 4' is odd, but the two eigenvalues differ by less than one part
in 108. Modes 1 and 16 are representative of eigenvectors that 'live', loosely
speaking, in the quadratic, complex part of the potential, where \x\ is small
enough that the ex2 term dominates the dx4 term in (4.1), whereas mode 50
is one for which the dxA term is dominant.

7. Scalar measures of nonnormality

Suppose we suspect that A may be highly nonnormal. Before turning to
pseudospectra, there are various scalars we might compute in an attempt to
shed light on this matter. An early and influential paper on this topic was by
Henrici (1962), and further contributions have been due to Chaitin-Chatelin
and Fraysse (1996), among others.

For simplicity we use the B formulation of Section 2; all our statements
have twins for A.

One scalar we might consider, which goes back essentially to Henrici, is

\\BHB-BBHh

11*112
For the matrix .B200 this ratio has the value 0.01843, a number that seems
fully converged for the limit N —> 00 (for .B300 we get 0.01843 again). If
the denominator of (7.1) is changed to ||-B2||2, as suggested by Chaitin-
Chatelin and Fraysse (1996), we get the same results to five digits, and
if we further replace the Euclidean norm by the Frobenius norm \\B\\2

F —
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mode 1
(even)

mode 3
(even)

mode 16
(odd)

mode 50
(odd)

-10 -5 10

Fig. 2. Eigenvectors corresponding to the four eigenvalues of ^200 labelled in
Figure 1. (The mode numbers are sorted by decreasing real part.) The inner

curves are the real parts (subject to change with complex scaling), and the outer
envelopes are the absolute values and their negatives. These modes are actually

more accurate than they look, for they have been plotted by straight line
interpolation between points, whereas in fact the mathematical model is based on

polynomial interpolants. Notice that mode 50, with about 2 points per
wavelength, is near the limit of resolution for this grid
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J212\hj\2 to obtain what Chaitin-Chatelin and Fraysse call the Henrici
number, the numbers change only modestly to 0.02602. These results suggest
that, in some global sense, B is close to normal. This is a reflection of the
fact that since the coefficient d in (4.1) is real, the nonnormality of this
operator is localized for small \x\.

Another scalar we might consider, also going back to Henrici, is

\\Th
11*112'

where T is the strictly upper-triangular part of a Schur triangularization
(unitary triangularization) of B. Different Schur triangularizations may
lead to different values of ||T||2, so (7.2) as it stands is not well defined,
though it could be made so, at least for theoretical purposes, by taking the
infimum over all Schur triangularizations. For .E^oo, with the triangulariza-
tion computed arbitrarily by MATLAB, the ratio comes out as 0.02205, again
effectively converged for N —> 00 (for .B300 it is 0.02204). Switching to the
Frobenius norm, which makes the ratio independent of Schur triangulariza-
tion, changes the result to 0.02166 (0.02164).

A third scalar we might consider is the distance of B to the set of normal
matrices. For matrices measured in the Frobenius norm, this cannot be too
far from the previous estimate, according to an inequality established by
Laszlo (1994),

< inf{ \\B - N\\F : N is normal} < | |T| |F. (7.3)

So far, the departure from normality of our operator appears modest, per-
haps too small to be important. However, there is a further scalar that tells
a different story. If v\,..., vN are a set of linearly independent eigenvectors
of B, each normalized by \\vj\\2 = 1 (the normalization is not necessary, just
convenient), then an eigenvector matrix for B is an N x N matrix V whose
columns are these vectors taken in any order. The condition number of V is
the real number

1

which is necessarily > 1. The Bauer-Fike Theorem asserts that if B is
perturbed by E, then the eigenvalues move by at most K2(V)||.EI||2. If
K2(V) = 1) then V must be unitary and B must be normal. If K2(V) 3> 1,
on the other hand, perhaps there is a need to look beyond eigenvalues.

For our example £200 w e n n d

K2{V) = 2.83 x 1012.

Evidently the matrix of eigenvectors of B is very ill-conditioned indeed. This
number, unlike our previous ones, is not quite converged for N —> 00; for
Bieo we get K 2 ( V ) = 8.95 x 1011 and for B2 4 0 we get K 2 ( V ) = 3.74 x 1012.
However, convergence to a finite value as N —> 00 does seem to take place;
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£300 gives K2(V) = 3.79 x 1012 and BM0 gives K2(V) = 3.75 x 1012. In
particular, the conclusion that K2(V) is of order 1012 is genuine, and is not
a symptom of machine precision on our computer.

Are some of the individual eigenvalues to blame for this pronounced non-
normality? To find out, we can look at the condition numbers of the eigen-
values, denned for a simple eigenvalue A (Wilkinson 1965, p. 68) by

* < * > = w k • <7-4>
where w and v are normalized left and right eigenvectors of B corresponding
to the eigenvalue A, respectively. The significance of K(\) is that a perturba-
tion B —> B + E may alter the eigenvalue A by as much as re(A)||.E||2 (in the
limit of infinitesimal perturbations), but not more. Each eigenvalue neces-
sarily has K(X) < K,2{V)- The condition numbers of some of the eigenvalues
of our operator are indicated in Figure 3. Evidently the eigenvalues near
the origin, in the bottom-right part of the Y, are well conditioned. As one
moves towards the fork of the Y, however, the condition numbers increase
to about 1011. (The behaviour in the line of nearly degenerate eigenvalue
pairs is similar.) If we continue past the fork further into the left half-plane,
K(A) increases gradually to a maximum of about 3.6 x 1011 for N = 200,
which becomes 4.3 x 1011 for iV = 240.

It is apparent that the extreme ill-conditioning of the eigenvector matrix
of B is reflected in the individual eigenvalues, but not just in one of them
- in nearly all. Evidently there is a collective phenomenon at play here, a
pattern that transcends individual eigenmodes, and, indeed, this is perhaps
as far as scalar measures of nonnormality can usefully take us.

8. Random perturbations

Having decided to move beyond scalars, we begin to think about pseudospec-
tra. Now pseudospectra are sets in the complex plane, and the first question
to ask is, What does it mean to compute them? Do we want a picture of
boundaries of Ae (A) for various values of e? Do we want some kind of surface
plot? Do we want an approximate functional representation of the function
||(z — A)"11|? The customary answer in the literature to date has been the
first of these options, a graphical picture of boundary contours, and that is
what we consider in this article, but it is possible that other variations will
become popular in the future.

There is a simple idea for producing approximate pictures of pseudospec-
tra: modify A by one or more small complex (even if A is real) random
perturbations and look at the spectra of these perturbations. If A is a ma-
trix, the idea of a random perturbation is well defined. Working as usual
with the equivalent matrix B, we note that the set of all possible perturba-
tions E of a given norm e is compact and can be uniformly sampled by taking
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Fig. 3. Condition numbers K(A) of some of the eigenvalues of the matrix
B = B2oo- The condition numbers of the four starred nearly degenerate eigenvalue

pairs, from right to left, are 1.6 x 106, 6.7 x 107, 1.6 x 109, and 2.9 x 1010

random N x N matrices D with entries cr+ir, where a and r are independent
standard normals, and then setting E = tD/\\D\\2- Since ||.D||2 ~ y/2N as
N —> oo, where Â  is the dimension, approximately the same effect can be
achieved with less computation by the formula E = eD/y/2N.

The approximation of pseudospectra by random perturbations was illus-
trated by Trefethen (1992), where for each of thirteen example matrices with
N — 32, 100 random perturbations A + E were considered and the 3200 re-
sulting eigenvalues superimposed as small dots. Possibly the first computed
examples of this kind were published by Trefethen (1990).

In investigating random perturbations, there is no need to consider matri-
ces E of full rank. As pointed out perhaps first by Riedel (Riedel 1994), the
boundary of the e-pseudospectrum can equally well or better be traced by
matrices of rank one, and so an alternative to the formulas above would be
D = xyH, where x and y are vectors of independent entries a + ir, followed
by E = eD/\\D\\2 = eD/(\\x\\2 IMh)- Proceeding in this way, we may trace
the boundaries of the pseudospectra somewhat more efficiently, and there is
no need for the computation of the norm of a matrix.
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As a practical matter, random perturbations are a valuable tool that
should be used routinely in dealing with highly nonnormal matrices. Ran-
dom perturbations are more important than the scalar measures of nonnor-
mality discussed in the last section, for they reveal more without being much
more expensive to calculate. To illustrate how compelling this technique may
be, Figure 4 shows the eigenvalues of one random rank one perturbation in
each case of the form B —> B + E, where B = B200 for our problem and
||£| |2 = € = 1CT1,10"3,10"5,10"7. (The results look about the same for
perturbations of full rank.) For the first time we begin to see the 'shape'
of this matrix A. As we would expect on the basis of Figure 3, the degree
of nonnormality is pronounced all along the tail of the Y extending into the
left half-plane, and reasonably uniform along that path.

There are three problems with the technique of computing eigenvalues of
random perturbations. One is that it gives only an approximate picture of
the pseudospectra. Another is that pictures of this kind all too easily mis-
lead people into presuming that the main point of analysis of pseudospectra
is the investigation of perturbations. Finally, if A is an operator of infinite
dimension, the notion of a random perturbation does not make sense, be-
cause E must range over a space that is not compact and thus cannot be
sampled uniformly. In practice, therefore, I recommend that one begin by
computing eigenvalues of random perturbations of finite matrices, without
worrying too much what the precise definition of 'random' is in the case of
a discretized operator, but then move on to other methods if the sensitivity
to perturbations of the physically important eigenvalues is large.

A different aspect of random perturbations is that, in some applications, a
perturbation of a structured kind may reveal certain algebraic properties of
a matrix or operator. An important special case is that, if A is real, plotting
the eigenvalues of real perturbations A + E may reveal the Jordan structure
of A; the 'spider plots' of Chaitin-Chatelin and Fraysse that show this effect
are beautiful and fascinating, and one of them appears on the cover of their
book (Chaitin-Chatelin and Fraysse 1996). A systematic study of structured
perturbations has been the subject of a number of papers by Hinrichsen and
Pritchard and Kelb (Hinrichsen and Pritchard 1992, 1994, Hinrichsen and
Kelb 1993).

9. Contour plots via the SVD

Let us now calculate pseudospectra properly. The place to begin is with
the singular value decomposition, taking advantage of definition (3.3). The
obvious algorithm is to evaluate (Tm-m(z — B) for values of z on a grid in
the complex plane and then generate a contour plot from this data. (If
B is Hermitian, the picture will be symmetric with respect to the real axis,
and one halves the computation time by taking advantage of this symmetry.)
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Fig. 5. Boundaries of e-pseudospectra of the matrix A = A2oo for
e = 10~\ 10~2,..., 10~10, from outside in. This is a fine picture, but producing it
by the obvious SVD-based algorithm involving a 100 x 100 grid requires 4 hours

of computing time on a SUN Ultra 30 workstation

Here, for example, is a MATLAB code fragment for this kind of computation,
assuming v points in each direction on the grid:

I = eye(size(B));

for j = l:nu

for i = l:nu

z = zz(i,j);

sigmin(i,j) = min(svd(z*I-B));

end

end

contour(x,y,loglO(sigmin),-10:-l);

Figure 5 shows numerically computed pseudospectra for our matrix B =
B2oo- This is typical of dozens of images of pseudospectra that have ap-
peared in the literature since Trefethen (1992). For this image, amm(zij — B)
was evaluated for 10,000 points z^j on a 100 x 100 regular grid in a square
portion of the complex plane, and the resulting values were given as data to
MATLAB'S contour plotter, just as in the code fragment above. (Whether or
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not one introduces the logarithm makes negligible difference.) We see at a
glance that the eigenvalues in the two finite branches of the Y have sensitivi-
ties that increase as one approaches the fork, and that the eigenvalues along
the infinite branch to the left of the fork have roughly constant sensitivities
on the order of 1010, as we knew already from Figure 3.

Figure 5 has a striking feature, which would prove important in many
applications: though the spectrum is in the left half-plane, the pseudospectra
protrude significantly into the right half-plane. We shall say more about this
in Section 19.

The trouble with Figure 5 is that producing it by the method we have
described involves a disturbingly long computation. Computing the SVD of
an NxN matrix at each point on&uxu grid requires 0(^2/V3) floatingpoint
operations, and for iV = 200 and v = 100, as in this figure, the computation
time on my workstation works out to about 4 hours. For TV = 1000, it would
rise to three weeks - or possibly much longer because of memory limitations.

Of course, we can speed up the calculation by using a coarser grid, and in
practice one would usually do this in the exploratory phase of any project.
Figure 6 illustrates pseudospectra plotted on four different grids correspond-
ing to v = 5, 10, 20, 100. Yet this set of plots mainly serves to emphasize
the need for better computational methods. Roughly speaking, one might
say that only the first of the four plots of Figure 6 is satisfactory in terms
of computing time, and only the last is satisfactory in terms of appearance.

The next three sections will describe three ways to accelerate this compu-
tation, which can be used in combination. For our example, the speedups
achieved are factors of approximately 1.5, 8, and 8, and when the methods
are combined, we get a speedup by a factor of better than 60.

10. Avoiding uninteresting sections of the z-plane

The first way to speed up the calculation of pseudospectra is the simplest:
avoid computing singular values in uninteresting regions of the complex
plane, where the resolvent norm is small and there are no boundaries of the
pseudospectra of interest. For our example, we note that in about a third of
the portion of C shown in our plots, not much is happening, and it is a waste
of time to evaluate ||(z — ^l)^1!!. Bypassing this step should accelerate the
computation by a worthwhile constant factor. We find that a crude device
of this sort improves the computation time for Figure 5 from about 4 hours
to 2.5 hours, a speedup by a factor of about 1.5.

Some interesting ideas for automating this kind of acceleration have been
proposed by Gallestey (1998a, 19986) under the name of the SH algorithm
('subharmonic'). Gallestey divides the region of C of interest iteratively into
squares of various sizes and then uses the maximum principle for || (z — A)~l ||
to prune away squares automatically on which nothing interesting can be
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50 -100

Fig. 6. Pseudospectra as in Figure 4 computed on successively finer grids; the
points z at which crm\n{z — A) has been evaluated are marked by dots. For v = 5,

there are just 25 SVDs to evaluate and the computation is fast, but the plot is
crude. The 'publication quality' grid with v = 100 is prohibitively expensive
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expected to be happening. Any 'industrial strength' software package for
computing pseudospectra should incorporate ideas like these.

A related, pointwise variant of the same idea is relevant to the various
iterative methods for computing <ymin{z — B) discussed in Sections 12 and 16.
Sometimes, we do not know in advance that a value z is uninteresting but
discover this in the course of iteration - say, if it becomes clear that am\n{z —
B) is > 1 and we only want to plot level curves below 1CT1. In this case it
may be advantageous to terminate an iteration before convergence.

11. Projection to a lower-dimensional subspace

The second way to speed up calculation of pseudospectra, independent of
the first, is to reduce the dimension of the N x N matrix A by orthogonal
projection onto an invariant subspace of dimension n < N. The idea is that
in many applications, most of the 'action' of interest can be captured by the
lower-dimensional projection. This technique was perhaps first employed by
Reddy, Schmid and Henningson (1993) and is described in Appendix B of
that paper and in Section 6 of Toh and Trefethen (1996). It is elementary,
but crucial in practice, and too often overlooked. We can often get an
improvement in this way by a factor of 10 or more.

Following the authors just cited, we first describe a procedure of this
kind based on explicit matrix diagonalization. Suppose V is an N x n
matrix whose columns are selected linearly independent eigenvectors of B,
satisfying BV = VD for some n x n diagonal matrix D of corresponding
eigenvalues. If V = QR is a QR decomposition of V, with Q of dimension
N x n and R of dimension n x n (Trefethen and Bau 1997), then we have
QHV = R and Q = VR'1 and therefore

QHBQ = QHBVR~l = QHVDR~1 = RDR'1.

Thus T — RDR~X, which is an upper-triangular n x n matrix, is the ma-
trix representation of the projection of B onto the subspace spanned by
the selected eigenvectors. We can illustrate this projection process by the
following MATLAB code segment, which projects B onto the invariant sub-
space corresponding to eigenvalues A with Re A > 7 for some constant 7. Of
course, different selections of special eigenvalues will be appropriate in other
applications (see, for instance, Section 21).

[V,D] = eig(B); eigB = diag(D);
select = find(real(eigB) > gamma);
V = V(: ,se lect) ; D = D(select .select);
[Q,R] = qr(V,0);
T = R*D/R;
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7 = -100
n = 53
7 minutes

7 = -150
n — 66
13 minutes

50 -100

7 = -250
n = 92
34 minutes

Fig. 7. Acceleration by preliminary projection onto an invariant subspace of
dimension n < N. For this example we consider just eigenvalues of real parts > 7

for various 7



270 L. N. TREFETHEN

Figure 7 illustrates the effect of applying this projection to our matrix
B = -B200 with 7 = —50, —100, —150, and —250. As more eigenvalues are
included, n rises from 37 to 53 to 66 to 92, but this is still far less than
200, and as the final operation count depends on n3, it is a very significant
improvement - about a factor of eight in this example.

A peculiar feature of the projection process just described is that it makes
use of a matrix diagonalization. This sounds like a bad idea, since in applica-
tions B will often be highly nonnormal or even nondiagonalizable, implying
that its eigenvalue problem may be very badly conditioned. In practice,
it seems that the use of diagonalization does not cause much trouble, for
reasons of backward error analysis. Though each individual numerically
computed eigenvalue and eigenvector of a highly nonnormal matrix may be
very much in error, their collective behaviour is generally better.

Nevertheless, it seems that in principle one ought to avoid the diago-
nalization, and this can be done by using a Schur decomposition (unitary
triangularization) instead. Suppose a unitary similarity transformation is
found of the form

" T X
B = Q

* 0 Y
QH ( l l . l )

where Q G cNxN is unitary, T G c n x n is upper-triangular, and X G
Cnx(N-n) a n d Y e c( i V-n)x(J V-") are arbitrary. If Qx G CNxn is the ma-
trix consisting of the first n columns of Q, then (11.1) implies BQi = Q\T,
which implies that if Tx = Xx, then B(Q\x) = X(Qix). Thus the diagonal
entries of T are n of the eigenvalues of B, and T is the projection of B onto
the corresponding invariant subspace.

The factorization (11.1) is known as a partial Schur decomposition (Don-
garra, Duff, Sorensen and van der Vorst 1998, Lehoucq, Sorensen and Yang
1998). Since X and Y are arbitrary, all that is really involved here is the
determination of an N x n matrix Q\ with orthonormal columns such that
T = QHBQI is upper-triangular. Such a matrix might be found by various
methods, but we shall consider just the simplest: computing a complete
Schur decomposition and then reordering the diagonal entries to bring those
of interest to the upper-left. Reorderings of this kind are a standard option
in LAPACK (Anderson et al., 1995). They are not standard in the current
version of MATLAB, but the desired effect can be achieved using the follow-
ing code segment adapted from programs of Diederik Fokkema (Fokkema
1996, Fokkema, Sleijpen and van der Vorst 1999):

[U,T] = schur(B);
if i s r e a l ( B ) , [U,T] = rsf2csf(U,T); end, T = t r i u ( T ) ;
eigB = diag(T);
select = find(real(eigB) > gamma);
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n = l e n g t h ( s e l e c t ) ;
for i = l :n

for k = s e l e c t ( i ) - l : - l : i
G([2 1],[2 1]) = planerot([T(k,k+l) T(k,k)-T(k+l,k+l)] ' ) ';
J = k:k+l; T(: ,J) = T(:,J)*G; T(J, :) = G'*T(J,:);

end
end
T = t r iu (T( l :n , l : n ) ) ;

Like the one given earlier, this code segment produces an upper-triangular
matrix T corresponding to the projection of B onto the selected subspace.

Orthogonal projections have a monotonicity property: they never in-
crease the resolvent norm at any point z. It follows that if A£(T) is the
e-pseudospectrum of the projected matrix, then Ae(T) C Ae(5), with the
e-pseudospectra of T increasing monotonically to those of B as successively
larger invariant subspaces are selected.

Our orthogonal projections can be viewed as a special case of a more
general class of two-sided projections that may be applied for problems
of computing pseudospectra. These have been studied under the name of
transfer functions by Hinrichsen and Pritchard and Kelb (Hinrichsen and
Pritchard 1992, Hinrichsen and Kelb 1993) and Simoncini and Gallopoulos
(1998).

Finally, it should be mentioned that a different projection idea has also
been advocated by Godunov and Sadkane (1996): the numerical use of re-
solvent integrals (Kato 1976) for the computation of projections associated
with subsets of C.

12. Triangularization and inverse iteration or Lanczos

A third, major new idea for speeding up the computation of pseudospectra
was introduced by S.-H. Lui in an article published in 1997 (Lui 1997). Lui's
method is described in his own paper and elsewhere as a method of 'contin-
uation', but his key contribution is really the technique of triangularization
followed by inverse iteration or inverse Lanczos iteration.

The idea is as follows. If B is a dense matrix, the computation of the
smallest singular value of each N x N matrix (z — B)~l takes O(N3) oper-
ations, for a total of O(u2N3) operations on a v x v grid. However, suppose
that, before computing any singular values, we perform a Schur decompo-
sition, with or without compression, to replace B by a unitarily equivalent
upper-triangular matrix T. Then for any z, z — B is unitarily equivalent to
the upper-triangular matrix z — T, and hence will have the same singular
values. Since z — T is triangular, however, its smallest singular value can be
computed in O(N2) rather than O(N3) operations. Thus, at the price of a
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single computation involving O(N3) operations, we have reduced the cost of
each subsequent SVD to O(N2). The overall improvement is from O(v2N3)
to O(N3 + v2N2) floating point operations, which for most applications is
effectively an improvement to O{y2N2).

If B has been orthogonally projected onto a lower-dimensional invariant
subspace as described in the last section, then it has been rendered triangular
already. In this case there is no need for a further Schur triangularization.

It remains to describe how om\n{z — T) can be computed in O(N2) op-
erations. The idea for this is that crmin(z — T) is the square root of the
smallest eigenvalue of (z — T)H(z — T), and this can be computed by various
iterations; since T is triangular, each step requires only O(N2) operations.
The simplest method is inverse iteration applied to (z — T)H(z — T), that is,
power iteration applied to (z — T) ~1 (z—T)~H. (An early use of inverse itera-
tion for computing pseudospectra, without triangularization, was by Baggett
(1994).) For example, the following rather crudely put together MATLAB
code segment is functionally equivalent to the shorter code on p. 265, but
many times faster for matrices of larger dimensions.

I = eye(s ize (B)) ;
[U,T] = schur(B);
if i s r e a l ( B ) , [U,T] = rsf2csf(U,T); end, T = t r i u ( T ) ;
for j = l :nu

for i = l :nu
z = z z ( i , j ) ;
Tl = z*I-T; T2 = T 1 J ;
v = randn(n,l) + sqrt(-l)*randn(n,1); v = v/norm(v);
sigold = 0;
for k = 1:99
v = Tl\(T2\v);
sig = norm(v);
if abs(sigold/sig-l) < .001 break; end
sigold = sig;
v = v/sig;

end

sigmin(i,j) = l/sqrt(sig);
end

end
contour(x,y,loglO(sigmin+le-20),-10:-l);

The main part of this code is a double loop just as on p. 265, except
that inside the loop, (Tmm(zij — B) is now computed by inverse iteration.
The convergence criterion used here is crude: we stop when two successive
estimates of <Jmin(zij — B)2 agree to a tenth of a percent, taking up to a
maximum of 99 steps.
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This simple method does well in many cases but, as always with power
iteration, the convergence may be slow if the dominant eigenvalue (of (z —
T)~l(z — T)~H) is not well separated from the others. To retain speedy
convergence in such cases one can replace the inverse iteration by an inverse
Lanczos iteration. Here is a modified MATLAB fragment to achieve the
desired effect:

I = eye(size(B));

[U,T] = schur(B);
if isreal(B), [U,T] = rsf2csf(U,T); end, T = triu(T);
for j = l:nu
for i = l:nu
z = zz(i,j);
Tl = z*I-T; T2 = Tl';

sigold = 0; qold = zeros(n.l); beta = 0 ; H = [];
q = randn(n,l) + sqrt(-l)*randn(n,l); q = q/norm(q);
for k = 1:99
v = Tl\(T2\q) - beta*qold;
alpha = real(q'*v); v = v - alpha*q;
beta = norm(v); qold = q; q = v/beta;
H(k+l,k) = beta; H(k,k+1) = beta; H(k,k) = alpha;
sig = max(eig(H(l:k,1:k)));
if (abs(sigold/sig-l)<.001) I (sig<3 & k>2) break, end
sigold = sig;
end

sigmin(i,j) = l/sqrt(sig);
end

end
contour(x,y,loglO(sigmin+le-20),-10:-l);

Suppose we apply this code to the matrix B = B200 of our example,
using no other acceleration methods. We find that, for most points z on the
grid, 3 iterations are taken inside the inner loop, as illustrated in Figure 8.
Thus the cost of each evaluation of crmin(z — B) is essentially that of 6
triangular matrix solves. The computing time improves from 4 hours to
about 29 minutes, a speedup by a factor of about 8. If uninteresting parts
of the z-plane are avoided, the improvement is from 2.5 hours to 19 minutes,
again a speedup by a factor of about 8. If in addition we first project B onto
the subspace of dimension 92 associated with eigenvalues A with Re A > a
with G = —250, as in the last section, the improvement is from 18 minutes
to 3.7 minutes. This last speedup is by a factor of about 5, not 8, since the
effectiveness of the preliminary triangularization is diminished for a matrix
of dimension 92 rather than 200.
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-100 -50

Fig. 8. Pseudospectra of the matrix B = B2oo computed on a 20 x 20 grid by
projection to dimension n = 92 followed by inverse Lanczos iteration. The

numbers of Lanczos steps at each point of the grid are marked, illustrating that
even with cold starts for each z, 3 steps typically suffice for convergence. Blank

sections of the plot correspond to areas of the complex plane that have been
pruned away as described in Section 10. This computation took 30 seconds

The Lanczos iteration we have just described is just one possibility for
this kind of computation. Alternative methods have been studied in detail
by Braconnier (1996 1997), Braconnier and Higham (1996), Lui (1997), and
Marques and Toumazou (1995 a, 19956). Braconnier and Higham improve
the Lanczos iteration by selective reorthogonalization and Chebyshev accel-
eration, and they emphasize the importance for robustness of a carefully
designed and conservative convergence criterion. All of these authors use
continuation from one point z to the next so that an iteration starts with a
better than random initial guess. Since a cold start tends to produce con-
vergence in three iterations, however, it seems that the use of continuation
is not indispensable.
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13. Summary of speedups discussed so far

For our tutorial example of dimension iV = 200, the various algorithms we
have described have performed roughly as follows:

straightforward use of SVD 4 hours
prune uninteresting portions of z-plane 2.5 hours

prune and project to Re A > —250 18 minutes
prune and use preliminary triangularization 19 minutes

combination of all speedups 3.7 minutes

By a succession of three improvements implementable in 40 lines of MATLAB

(see Section 20), we have reduced the computation time for Figure 5 from
4 hours to 4 minutes. This factor of 60 is comparable to the factor by which
workstations have speeded up in the years since Trefethen (1992), signalling
the roughly equal roles of hardware and algorithmic improvements in the
field of computation of pseudospectra.

Of course, to assess various algorithms systematically one would like
asymptotic formulas rather than examples. Unfortunately, outside of the
context of a particular class of matrices, it is hard to see how to derive asymp-
totic formulas with much substance for the computation of pseudospectra
of matrices. How much can one gain by projection to a lower-dimensional
subspace? It depends on how far the dimension can be lowered, and this
depends on the problem at hand, not on any general parameters.

Nevertheless we offer this rough guide to the improvement factors that
seem to be achievable for many examples:

prune uninteresting portions of z-plane cuts no. of grid points in half
project to interesting subspace cuts iV in half

preliminary triangularization speeds up by factor iV/30
combination of all three speeds up by factor iV/4

This last figure JV/4 is roughly the product of the three speedup factors
23 = 8, 2, and (JV/2)/30. We may call it a Rule of Thumb. For a typical
problem of size N = 1000, for example, one should expect to be able to
compute a publication-quality plot of pseudospectra with about 1/250 as
much work as by using the algorithm of p. 265.

14. Parallel computation of pseudospectra

Much further speedups are available via a fourth method: the use of multi-
ple processors. In many situations the computation of pseudospectra falls in
the class of problems known as embarrassingly parallel. This means that the
computation decouples so readily that taking advantage of multiple proces-
sors requires little effort. The first parallel computations of pseudospectra
appear to have been those by A. E. Trefethen reported in Trefethen, Tre-
fethen, Reddy and Driscoll (1993), and subsequent contributions in this area
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have been due to Braconnier (1996), A. E. Trefethen et al. (1996), Fraysse,
Giraud and Toumazou (1996), Heuveline, Philippe and Sadkane (1997), Tre-
fethen, Trefethen and Schmid (1999), and Bekas and Gallopoulos (1999).

In the simplest case, suppose one is computing a plot of pseudospectra by
evaluating <rmin(zij — B) on a grid of points Zij by means of a standard SVD.
The work involved is approximately independent of z\j and, accordingly, all
one needs to do to take advantage of p processors is divide the points {z^} at
the beginning into p sets of roughly equal size. Each processor needs to know-
its set of points and the matrix B, but no communication or synchronization
is needed until the computation is finished.

A slightly more complicated situation may arise if the work varies sig-
nificantly with z^, which may happen in the context of inverse iteration or
Lanczos iteration, or in any problem where the numerical discretization itself
depends on z^, as may easily occur if, for example, values z with \z\ S> 1
require finer grid resolutions than those near the origin. In this case, if
the points z^ are to be treated independently, then load-balancing can be
achieved by maintaining a list of points z^ not yet treated and assigning a
new point to a processor whenever it finishes with an old one. If the treat-
ment of the points is dependent, which might be the case because of some
kind of initial guess continued from point to point, then the management of
these lists will benefit from some geometric structuring.

We will not go into further details, but just summarize the subject of par-
allel computation of pseudospectra with the statement that if p processors
are available, one can usually achieve a speedup by a factor close to p.

15. Global Krylov subspace iterations

Up to now, we have discussed methods belonging to the realm of dense
linear algebra, where all N2 entries of a matrix are manipulated explicitly
and fundamental matrix calculations require O(N3) operations. However,
many people have had the idea that the well-developed techniques of Krylov
subspace iterations should also have a role to play in computing pseudospec-
tra, and, for matrices of dimensions in the thousands, this conclusion seems
inescapable. For information on Krylov subspace iterations see Barrett et
al. (1994), Dongarra, Duff, Sorensen and van der Vorst (1998), Greenbaum
(1997), Lehoucq, Sorensen and Yang (1998), Saad (1992), and Trefethen and
Bau (1997).

The very many ideas of this kind that might be considered fall roughly
into two classes. One can attempt to approximate the pseudospectra of a
matrix or operator all at once with a single sequence of Krylov subspaces,
or one can use Krylov methods pointwise to accelerate the computation of
resolvent norms for individual values of z. In this section we consider the
first of these ideas. (In the end the greatest power may come from combining
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the two, working locally with small regions of the z plane but not individual
points z.)

The motivation for methods of this kind is that Krylov subspace iter-
ations extract essential information from a matrix within the context of
low-dimensional subspaces; they are projection processes closely related to
those discussed in Section 11. Instead of computing just eigenvalues (Ritz
values) in these subspaces, why not compute pseudospectra? Preliminary
ideas in this direction can be found in Freund (1992) and in Nachtigal, Re-
ichel and Trefethen (1992), and the method has been explored further by
Toh and Trefethen (1996) and Simoncini and Gallopoulos (1998).

The simplest procedure, as described by Toh and Trefethen, goes as fol-
lows. Starting from a random initial vector, we carry out an Arnoldi itera-
tion in the usual manner, obtaining thereby an increasing sequence of initial
columns of a Hessenberg matrix unitarily similar to B. We then compute
pseudospectra of successive sections of this Hessenberg matrix, and take
these as approximations to the pseudospectra of B. Rectangular sections
with dimensions of the form (n + 1) x n are more appropriate than square
ones; the pseudospectra of a rectangular matrix B can be denned via (3.3)
or, equivalently, via the pseudoinverse of z — B (Toh and Trefethen 1996).
(It will be interesting to see whether pseudospectra of rectangular matrices
achieve importance in other contexts in the years ahead.)

Figure 9 gives an indication of how this method performs for our example
problem. Starting from the full matrix B = -B200) pseudospectra are plotted
corresponding to Krylov subspace approximations of dimensions 120, 140,
160, and 180. The results are disappointing. Not until n is close to 200 do the
pictures look reasonable and, of course, in numerical computation one wants
more than merely something that looks reasonable. What has gone wrong
is that the spectrum of -B200 extends very far into the left half-plane, with a
leftmost (nonphysical) eigenvalue at about — 700,000 + 300i, which will only
get worse if TV is increased. Under such circumstances a straightforward
Arnoldi iteration has little chance of capturing the interesting behaviour
near the origin efficiently. One can improve the situation in various ways,
for example by working with B~x instead of B, but this is not an easily used
general technology.

For large-scale problems, the first thing one might do in the exploratory
phase of a computational project involving highly nonnormal matrices should
perhaps be a computation of the kind described in this section. Indeed,
it might be argued that pictures of estimated pseudospectra should be a
routine by-product of all large-scale Krylov subspace calculations; the di-
mensions of the Hessenberg matrices will usually be low, so the cost will be
small. If one decides that accurate pictures of pseudospectra are needed,
however, in most cases one will want to move on to other methods.
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Fig. 9. Pseudospectra of Arnoldi projections of various dimensions for B = B2

Convergence takes place eventually, but it is too slow for Krylov subspace
iterations in this pure form to be of much use for this example
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16. Local Krylov subspace iterations

Krylov subspace methods are much more powerful than the last section
may seem to suggest. The crucial modification is that they be applied
for individual points z 6 C, or in localized regions. Then one has the
potential for convergence to arbitrary accuracy at high speed and, for large-
scale problems, these are the most powerful methods known.

I will not attempt to describe these methods in any detail, as my expe-
rience in this area is small and new developments are occurring very fast.
However, here is a quick outline. One of the first papers to discuss meth-
ods of this kind was by Carpraux, Erhel and Sadkane (1994), who used a
Davidson iteration with continuation (Davidson 1975). This method was
subsequently parallelized by Heuveline, Philippe and Sadkane (1997) and
applied by them to a matrix of dimension N = 8192. Other contributions
in this area are due to Lui (1997), Braconnier (1996, 1997), Braconnier and
Higham (1996), and Ruhe (1994, 1998), who has developed a rational Krylov
algorithm. In this and other computations it is crucial to use exact or ap-
proximate inverses of the matrix being analysed, wherever possible, as this
may greatly speed up the convergence. The starting point is the idea of
shift-and-invert Arnoldi iteration but, from there, many different paths can
be taken.

One of the leading projects currently underway for large-scale computa-
tion of pseudospectra is being carried out by numerical analysts and plasma
physicists at the University of Utrecht and the CWI in the Netherlands (van
Dorsselaer, Goedbloed, Nool, van der Ploeg, van der Vorst and others). In
a research project on the stability of plasmas, these researchers have suc-
ceeded in computing the eigenvalues of generalized unsymmetric eigenvalue
problems, associated with Tokamak plasmas, of order up to 262,144. On
a CRAY T3E, a relevant part of the so-called Alfven spectrum (12 eigen-
values) could be computed in 7 seconds of wall-clock time. This was done
with the Jacobi-Davidson method (Dongarra, Duff, Sorensen and van der
Vorst 1998, Sleijpen and van der Vorst 1996), using a direct decomposition
of a shifted matrix for one single shift in the neighbourhood of the desired
part of the spectrum. The group in Utrecht has now started work on the
evaluation of pseudospectra for this problem, also with the Jacobi-Davidson
method and with similar preconditionings as for the generalized eigenprob-
lem. The idea is that one single preconditioner can be used for a portion of
the pseudospectra, and the research focuses on the efficient re-use of search
subspaces in sweeping over the spectrum with the Jacobi—Davidson method.

Continuation of data from point to point appears to be more important
for these large-scale Krylov subspace iterations than for the dense matrix
computations discussed in Section 12. The reason is that the large-scale
methods depend crucially on the use of subspaces that get enlarged and de-



280 L. N. TREFETHEN

flated as the iteration proceeds. To evaluate a resolvent norm \\(z — i ? ) " 1 ^ ,
it may save a great deal of work if one starts with the subspaces already
determined for a neighbouring point z'.

17. Curve-tracing for pseudospectral boundaries

Quite a different approach to producing plots of pseudospectra has been
proposed by Kostin (1991) and worked out in detail by Briihl (1996). Rather
than use a contour plotter with data based on a grid, why not trace the
boundary curves of the pseudospectra directly? Such a technique has two
potential advantages. One is that we can determine the boundary curves
to great accuracy, if that is desired. The other is that fewer evaluations of
Cmin^ — B) may be needed since no grid is involved.

Briihl put this idea into practice with a Newton iteration at each step
and showed that it can be effective. An appealing feature of his method
is that any speedups one gets in this fashion can be combined with those
provided by methods for accelerating the computation of crmin(,z — B), such
as projection and Lanczos iteration.

For general use, the method of curve tracing runs into questions of how to
handle corners and, more seriously, how to cope robustly with pseudospectra
that have two or many components. It is very attractive, however, for
problems where one wants to concentrate accurately on particular sections
of the boundaries of pseudospectra. For example, by a method of this kind
one can design a program that enables the user to click with the mouse at a
point in the complex plane and have the computer draw the boundary of a
pseudospectrum that passes through this point. This can be informative and
beautiful graphically, and it can provide an elegant route to computational
estimates of matrix functions of interest based on contour integrals. One
could click on a point z, for example, and see not only the pseudospectral
boundary that passes through z but also some numerically computed upper
and lower bounds based on that curve.

Briihl's work on curve-tracing methods has been carried further by Bekas
and Gallopoulos (1998, 1999) in a method called COBRA. These authors
combine curve-tracing and grid methods, using 'a small, moving grid that
follows the boundary <9Ae, almost like the head of a cobra that follows the
movements of its prey'. This hybrid approach, they argue, offers the advan-
tages of curve-tracing combined with greater robustness and opportunities
for parallelism.

18. Pseudospec tra in Banach spaces

For a fixed matrix, all norms are equivalent, and thus the resolvent norms
associated with two different norms differ at most by constants. Since the
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effects of interest in plotting pseudospectra are often in some sense exponen-
tially strong, it follows that in many cases, the pseudospectra of a matrix
do not change much when one switches, say, from || • H2 to || • ||i or || • ||oo.
In such cases the choice of norm may not be too important. (More extreme
changes of norm may have more extreme effects; after all, the pseudospectra
can be rendered trivial by the switch to a norm defined by the coefficients
in an expansion in eigenvectors.)

It would be a mistake to presume, however, that the difference between
|| • H2 and || • ||i, say, or more generally between Hilbert spaces and Banach
spaces, is always minor. Once one is dealing with operators of infinite di-
mension or their matrix discretizations, the gaps between p-norms may be
arbitrarily large, and in some cases the 'physics' of the problem lies in the
gap.

Pseudospectra in non-Euclidean norms are discussed from a theoretical
point of view in van Dorsselaer, Kraaijevanger and Spijker (1993), and an
example of a paper in which they are computed numerically is the study
of Abel integral operators by Plato (1997). My own conversion to the im-
portance of this subject came with a study of the 'cutoff phenomenon' that
occurs in certain Markov chains (Diaconis 1996). Diaconis and others have
shown that, for various random processes such as random walk on a hyper-
cube (Diaconis, Graham and Morrison 1990) and riffle shuffling of a deck
of cards (Bayer and Diaconis 1992), convergence to a uniform probability
distribution, when measured in a certain way, occurs not gradually but in
a sudden fashion after a certain number of steps. Since the processes in
question involve powers of matrices, this nonsteady behaviour suggests that
pseudospectra must be important. The matrix dimensions in these prob-
lems are sometimes combinatorially large, however, and in such instances it
may be crucial to use || • ||i (the natural norm for probability) rather than
|| • H2. Indeed, the matrices of interest are sometimes normal with respect
to the Euclidean norm. For example, the problem of random walk on an n-
dimensional hypercube leads to a matrix of dimension N = 2n. The matrix
is real and symmetric, hence normal, so a normalized matrix of eigenvectors
has K2(V) = 1 in the 2-norm and uninteresting pseudospectra. In the 1-
norm, however, we get KI(V) « 106 for n as low as 40, and the corresponding
pseudospectra reach outside the unit disk. Similarly, the problem of riffle
shuffling of a deck of 52 cards leads to a matrix of dimension 52! « 8 x 1067

with «i(V) ~ 1040 (Jonsson and Trefethen 1998). The largest eigenvalue is
A = 1/2, but the pseudospectra protrude outside the unit disk.

The obvious algorithm for computing pseudospectra with respect to || • ||i
or || • Hoc requires the inversion of z — A at a cost of O(N3) flops at each point
z. The acceleration methods we have described do not apply directly in this
case, but it is possible that they could be adapted to this purpose by the use
of dual norms. Very recently, the first contribution that I know of to the fast
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computation of pseudospectra in || • ||i or || • H^ has appeared, by Higham and
Tisseur (1999). These authors combine two ideas with impressive results.
The first is the Schur reduction of A to triangular form, as in Section 12;
in contrast to the situation with || • H2, here we must retain the matrix Q
of the reduction A = QTQ* for use in further computations, as the unitary
similarity transformation does not leave || • ||i or || • ||oo invariant. The second
is an iteration to determine the norm of the inverse of a triangular matrix
that is developed as a fast algorithm for condition number estimation based
on block matrices. Aside from the treatment of nonstandard norms, one of
the useful features of the work by Higham and Tisseur for readers of the
present paper is that it relates the computation of pseudospectra to the
estimation of condition numbers.

19. Pseudospectra and behaviour

Now, then, briefly, what is the purpose of all these computations of pseu-
dospectra?

Eigenvalues are generally computed for one or both of two reasons: to aid
in the solution of a problem via diagonalization, or to give insight into how
a system behaves (Trefethen 1997). Important examples of behaviour are
stability or resonance for various physical or numerical processes and speed
of convergence for numerical iterations. Behavioural phenomena are typi-
cally quantified by norms of functions of the matrix or operator in question,
such as ||i4n||, || exp(£A)||, or ||p(.A)||, where p is a polynomial or a rational
function. If A is an unbounded operator, as with our example (4.1), the
notion of exp(tA) can be made rigorous by various methods considered in
the theory of semigroups (Kato 1976, Pazy 1983).

If A is far from normal, pseudospectra are likely to do better than eigen-
values alone in the second of these two roles. It is known that pseudospectra
cannot in general give exact information about norms of functions of ma-
trices or operators (Greenbaum and Trefethen 1993). However, they may
provide bounds that are much sharper than those obtained from eigenvalues.
Some such bounds are described in Trefethen (1997), and examples can be
found in many of the articles cited in the introduction.

Here we will not discuss these matters in generality but just illustrate what
the pseudospectra of our example operator A of (4.1) may reveal about its
time evolution. To be specific, suppose we are interested in the linear evolu-
tion process du/ dt = Au, with solution u(t) = exp(tA)u(0). Looking first
at the spectrum of A, we note that the rightmost eigenvalue in the complex
plane is A = —0.7803 + 1.89511 (labelled 1 in Figure 1), and the second-
rightmost is A = —2.3246 + 5.6695i. These numbers appear to suggest that
the evolution of this system will exhibit gentle decay at a rate approximately

o8^ t n e dominant modes being smooth ones.



COMPUTATION OF PSEUDOSPECTRA 283

x10
2i

max sa 187,000

Fig. 10. Transient behaviour of || exp(iA)||: the actual curve, and the lower bound
/C obtained from pseudospectra. The pseudospectra correctly capture the

transient growth of order 105

A glance at the pseudospectra in Figure 5 suggests a different time evo-
lution. In fact, the most conspicuous part of the behaviour of this pro-
cess will be associated with the nearly degenerate eigenvalues along the
starred branch, of which the rightmost is the mode 3/4 pair, with A «
—2.6809 + 70.8747L Because the pseudospectra in this part of the plane
protrude so strongly into the right half-plane, the evolution process will be
susceptible to large transient effects, and the structures involved will have
frequencies closer to 70 than 0. The low-frequency modes 1 and 2 will be
significant only for long time integrations, and then only if the dynamical
system is purely linear, governed by A alone, with no variations of coeffi-
cients or forcing terms or nonlinearities.

Figure 10 shows a plot of || exp(L4)|| against t. We see that there is very
strong transient amplification of some initial vectors, rising to a maximum
of about 187,000 around t = 0.73. The order of magnitude of this growth
can be predicted from the pseudospectra. For any A and e, if Ae(A) extends
a distance rj into the right half-plane, then it can be shown by a Laplace
transform that ||exp(L4)|| must be as large as 77/e for some t > 0. Given
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A, let the Kreiss constant K, for A be defined as the supremum of this ratio
over all e (Kreiss 1962). Equivalently, K is the smallest constant such that

for all z with Re z > 0. Then the inequality just mentioned takes the form

sup||exp(L4)|| >K. (19.1)
i>0

For our example the Kreiss constant is approximately K = 48570, attained
for z = 1.25+68.88i, with I K ^ - A ) ^ ! = 38850. The dashed line in Figure 10
marks this lower bound.

The size of the transient hump in || exp(L4)|| is only one of the aspects of
the behaviour of A that pseudospectra may shed light on. Another would
be the response of a system governed by this operator to oscillatory inputs
at various real frequencies to, corresponding to points on the imaginary axis
of Figure 5. Judging by the spectrum, one would guess that only frequencies
LO « 0 or u! « 70 should excite much response, but the pseudospectra imply
that amplifications on the order of 103 or more can be expected for the full
range of frequencies u; € [40,80]. This phenomenon of pseudo-resonance
and other aspects of the physics of nonnormality are discussed in Trefethen,
Trefethen, Reddy and Driscoll (1993), Butler and Farrell (1992), and Farrell
and Ioannou (1996).

More generally, pseudospectra may provide bounds on ||/(^4)|| for any
function / . The most general results along this line are to be found in Toh
and Trefethen (19996), where relationships are derived between the size of
||/(-A)||, the size of f(z) on a complex domain Q, and the Kreiss constant of
A with respect to f2.

20. A MATLAB program

An historic event in numerical computation was the codification of algo-
rithms for computing matrix eigenvalues into the Fortran software package
EISPACK in the 1970s (Smith et al. 1976). Major algorithmic advances
had been made in that subject in the preceding decade and a half, which
had advanced the state of the art far beyond what an average scientist could
expect to program for him- or herself, and, equally important, these were
problems for which potential users knew that they needed help. The im-
pact of EISPACK was enormous: a set of problems that had earlier been
challenging were reduced very quickly, as it were, to a black box.

The problem of computing pseudospectra is not yet in a comparable situ-
ation. The problem is too new and too rapidly changing, and the algorithms
are not yet sufficiently well worked out for it to be appropriate to aim for
black boxes in this area. Nevertheless, in a modest way, small-scale software
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'/, psa.m - Simple code for 2-norm pseudospectra of given matrix A.

'/, Typically about N/4 times faster than the obvious SVD method.

'/, Comes with no guarantees! - L. N. Trefethen, March 1999.

'/. Set up grid for contour plot:

npts = 20; s = .8*norm(A, 1) ; '/. <- ALTER GRID RESOLUTION

xmin = -s; xmax = s; ymin = -s; ymax = s; '/, <- ALTER AXES

x = xmin:(xmax-xmin)/(npts-l):xmax;

y = ymin:(ymax-ymin)/(npts-l):ymax;

[xx.yy] = meshgrid(x,y); zz = xx + sqrt(-l)*yy;

7, Compute Schur form and plot eigenvalues:

[U,T] = schur(A);

if isreal(A), [U,T] = rsf2csf(U,T); end, T = triu(T); eigA = diag(T);

hold off, plot(real(eigA).imag(eigA),'.','markersize',15), hold on

axis([xmin xmax ymin ymax]), axis square, grid on, drawnow

'/, Reorder Schur decomposition and compress to interesting subspace:

select = find(real(eigA)>-250); 7. <- ALTER SUBSPACE SELECTION

n = length(select);

for i = l:n

for k = select(i)-1:-1:i

G([2 1] , [2 1]) = planerot([T(k,k+l) T(k,k)-T(k+l,k+l)] ' ) ' ;

J = k:k+l; T(:,J) = T(:,J)*G; T(J,:) = G'*T(J,:); end, end

T = triu(T(l:n,l:n)); I = eye(n);

'/, Compute resolvent norms by inverse Lanczos iteration and plot contours:

sigmin = Inf*ones(length(y),length(x));

for i = 1:length(y)

if isreal(A) & (ymax==-ymin) & (i>length(y)/2)

sigmin(i,:) = sigmin(length(y)+l-i,:);

else

for j = l:length(x)

z = zz(i,j); Tl = z*I-T; T2 = Tl';

if real(z)<100 7. <- ALTER GRID POINT SELECTION

sigold = 0; qold = zeros(n,l); beta = 0; H = [] ;

q = randn(n,l) + sqrt(-l)*randn(n,l); q = q/norm(q);

for k = 1:99

v = Tl\(T2\q) - beta*qold;

alpha = real(q'*v); v = v - alpha*q;

beta = norm(v); qold = q; q = v/beta;

H(k+l,k) = beta; H(k,k+1) = beta; H(k,k) = alpha;

sig = max(eig(H(l:k,l:k)));

if (abs(sigold/sig-l)<.001) I (sig<3 & k>2) break, end

sigold = sig; end

7.text(x(j),y(i),num2str(k)) '/. <- SHOW ITERATION COUNTS

sigmin(i.j) = l/sqrt(sig); end, end, end

disp(['finished line ' int2str(i) ' out of ' int2str(length(y))]), end
contour(x,y,loglO(sigmin+le-20),-8:-l); 7. <- ALTER LEVEL LINES

Fig. 11. Fast (not robust) MATLAB code for pseudospectra of dense matrices
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for computing pseudospectra may prove useful. The MATLAB program of
Figure 11 is one that I hope readers may find helpful, after adapting the
details to their needs, as a starting point for dense matrix computations.
The code is available online at

www.comlab.ox.ac.uk/oucl/people/nick.trefethen.html.

Its main purpose is to show how much better one can do for many problems
than to use the obvious SVD algorithm. But this is nothing like robust
software, and makes no claim to be. This code is filled with arbitrary features
that can easily be broken.

Just one item of software has achieved something like general use for the
calculation of pseudospectra: the MATLAB program pscont from the Test
Matrix Toolbox of Higham (1995). That code makes use of a straight SVD
algorithm, however, and thus is not as fast as we would like. Other authors
have taken steps to develop software for high-performance computations,
but none appear to be in wide use at present.

21. Another example

I would like to finish by presenting a plot of pseudospectra of a second
example operator, one with a special meaning for this field. So far as I know,
the first person to define the notion of pseudospectra was Henry Landau at
Bell Laboratories in the 1970s, who was motivated in part by applications
in lasers and optical resonators (Landau 1975, 1976, 1977). One of the
operators that Landau considered in detail was the complex symmetric (but
non-Hermitian) compact integral operator

Au{x) = JiF/^f e-tF^-y~>2u{y)dy, (21.1)
v J-i

acting on functions in L^y—1,1], where F is a large parameter, the Fresnel
number (Landau 1976, 1977). This operator is easily described in words:
it convolves a function on [—1,1] with a high-frequency complex Gaussian.
The eigenvalues lie on a spiral in the unit disk that converges to the origin
(Cochran and Hinds 1974), but Landau proved that, for any e > 0, the
e-pseudospectrum A£(A) contains the entire unit circle, for all sufficiently
large F. He further showed that each z with \z\ = 1 has an e-pseudo-
invariant subspace of dimension at least O(\fF) as F —> oo.

Twenty-two years later, Andrew Spratley and I have carried out numerical
computations of the pseudospectra of this operator considered by Landau.
We use a spectral collocation discretization much as in Section 5; the details
will be reported elsewhere. The eigenfunctions and pseudoeigenfunctions
are highly oscillatory, and fine grids are needed to resolve them. For the
case F = 64, we find that an N x N matrix with N = 600 suffices for a good
picture of pseudospectra, shown in Figure 12.
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Fig. 12. Spectrum and e-pseudospectra of the operator (21.1) (F — 64) studied in
Landau's original work on pseudospectra, for e = 10"1,10~2,..., 10~8. The

dashed curve is the unit circle. Unlike the differential operator (4.1), this integral
operator is compact, and the eigenvalues spiral in to the origin. As F —> oo, for

any e > 0, Ae(Ap) converges to the disk \z\ < 1 + e. This figure, based on a
spectral discretization of dimension N = 600, is probably accurate to plotting

accuracy except in a central region of radius about 0.1

With N = 600 rather than N = 200 as before, the evaluation of a single
resolvent norm \\(z — ^4)~1|| for Figure 12 takes about 27 times longer than
for Figure 5, about 15 seconds on the SUN Ultra 30. Furthermore, because
of the fine structure to be resolved in the plot, we have used a 200 x 200
rather than 100 x 100 grid. This means that the total time to compute
Figure 12 by the obvious SVD algorithm should be about 100 times greater
than the previous figure of 4 hours, that is, about 15 days. According to the
Rule of Thumb of Section 13, however, it should be possible to speed this
up by a factor of about JV/4 « 150 by the dense matrix methods described
in Sections 10-12 and in the MATLAB program of Figure 11, bringing the
computation time down to two or three hours. We used a projection onto
the space spanned by eigenvectors associated with eigenvalues A with |A| >
0.0001. This reduced the matrix dimension to N = 161, and, in the event,
the computation took about 1 hour.
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22. Discussion

The computation of pseudospectra is only a decade old. Remarkable progress
has been made in the 1990s; of the 111 items in the list of references below,
96 date from this decade!

In this survey I have concentrated mostly on techniques for dense matrices,
typically those of dimension less than 1000. Many of the developments to
come in the years ahead will pertain to the other case of sparse or structured
matrices of larger dimensions, where variations on the themes of Arnoldi,
Jacobi-Davidson and rational Krylov iterations are powerful.

Our discussion has been confined to the standard matrix problem Ax —
Ax, that is, pseudospectra of matrices or operators, but in many applications
it may be more appropriate to consider the generalized problem Ax = XBx,
that is, pseudospectra of matrix or operator pencils (van Dorsselaer 1997,
Fraysse, Gueury, Nicoud and Toumazou 1996, Fraysse and Toumazou 1998,
Riedel 1994).

Computing pseudospectra is not yet a routine matter among scientists
and engineers who deal with nonnormal matrices, but I think it will become
so. The nature of the software that is available will play a decisive role in
determining how the field develops. As time goes by, more software products
for large-scale eigenvalue computations will appear, descendants of today's
codes such as ARPACK (Lehoucq, Sorensen and Yang 1998), and these will
show an increasing emphasis on graphical interaction with the user. In such
an environment it is inevitable that scientists will be encouraged to calculate
more than just eigenvalues and, gradually, the computation of the eigenval-
ues of nonnormal matrices and the computation of their pseudospectra will
fuse into one subject.

This field will also participate in a broader trend in the scientific comput-
ing of the future, the gradual breaking down of the walls between the two
steps of discretization (operator —> matrix) and solution (matrix —> spectrum
or pseudospectra). For many problems, the matrix —>operator limit is ill-
behaved in the spectrum but well-behaved in the pseudospectra. Perhaps
pseudospectra will play a role too in breaking down walls between the the-
orists of functional analysis and the engineers of scientific computing.
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